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This paper presents incomplete decompositions for various types of matrices as they occur
in the implicit discretisation of practical problems. A review is given of methods for the usual
five-point discretisation of a self-adjoint elliptic second-order partial differential equation in
two dimensions on a square. The matrices which occur in this type of problem are symmetric
M-matrices of very regular structure. The convergence behaviour of the different decom-
positions for this case is demonstrated by numerical experiments. The paper also gives decom-
positions for the following type of matrices: (i) Symmetric M-matrices of a different structure.
(ii) Symmetric positive definite matrices. (iii) Non-symmetric matrices.

1. INTRODUCTION

In Ref. [8] the idea of constructing an approximation K for arbitrary sparse M-
matrices' 4 by incomplete LU factorisation was introduced. The matrix K has the
property that any system Kv = w can be solved much easier than Ax = b. This led to
the iterative method x"*'=x" + K~'(b —Ax") for the solution of Ax=5. Also it
has been proven that the splitting 4 = K — R is regular?, which implies that the
iterative method always converges. For symmetric matrices A, these decompositions
were used as preconditionings for the conjugate gradient algorithm. In the examples
given in Ref. [8] matrices were considered arising from five-point discretisation of a
self-adjoint elliptic partial differential equation on a rectangular region. Only two
different incomplete decompositions were demonstrated.

In this paper we present a more systematic review of the possible incomplete
decompositions for that problem (Section 2.1). In addition, we shall discuss incom-
* Supported in part by the European Research Office, London, through Grant DA ERO-75-G-084.

'A4 = (ay) is an M-matrix if @; <0 for i+, 4 is non singular and 4 ~' > 0.

2 The splitting A = M — N is a regular splitting if M is non singular, M~' >0 and N> 0.
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plete decompositions for other types of matrices, e.g., M-matrices arising from
problems with periodic boundary conditions (Section 2.2) and M-matrices with a
more arbitrary structure (Sections 2.4 and 2.5). For this purpose we need an
extension of the definition of an incomplete decomposition given in the proof of
Theorem 2.3 in Ref. [8]. In the process defined there some off-diagonal elements were
omitted after each elimination step. If, instead of omitting some off-diagonal elements,
we replace them by negative elements which are smaller in absolute value, or if
diagonal elements are replaced by larger ones, the construction process does not
break down and the resulting incomplete decomposition ‘LU’ defines a regular
splitting of 4. This new process describes the extended concept of incomplete decom-
positions. A specific example of this process is the following: In the kth step of the
Gaussian elimination process elements are eliminated with the kth row. This may
cause three effects:

(i) zero off-diagonal elements turn to negative non-zero values;

{iil) non-zero off-diagonal elements become smaller ({(although larger in
absolute value);

(iii) diagonal elements become smaller (but remain positive);

thus omitting to carry out the elimination corrections for some of the elements of the
matrix results in an incomplete decomposition. Examples of this type of decom-
position are given in Sections 2.1.2, 2.1.3, 2.4 and 2.5.

Other approximate factorisations are discussed by Stone [11], Dupont e al. |3],
Gustafsson [5] and Wong [15]. They all introduce one or more parameters into the
decomposition process to accelerate the convergence. In particular the condition
numbers of their preconditioned matrices are in the limit proportional to the mesh
parameter 1/h whereas the methods described in this paper lead to condition numbers
proportional to 1/h% The property of regular splitting is lost in most of their
examples.

Kershaw [6] and Manteuffel [7] provide extensions for positive definite matrices.
We shall describe these briefly and present another one in Section 3.

Incomplete decompositions for p.de’s in three dimensions are treated in
Section 2.3. In Section 4 algorithms for non-symmetric matrices are ‘described.

In Section 5 convergence results as well as ‘eigenvalue’ information on the decom-
positions described in Section 2.1 are given for some specific examples.

2. INCOMPLETE DECOMPOSITIONS FOR SYMMETRIC M-MATRICES

2.1. Five-Point Discretisation of Elliptic Partial Differential Equations in Two
Dimensions

The linear equations in this section arise from five-point discrete approximation to
the second-order self adjoint elliptic partial differential equation:



136 MEIJERINK AND VAN DER VORST

7 17 . 7 7
~ 5 (40 ) ) = £ (Blo ) ue) ) + €. )t 2) = n

with A(x, y), B(x,y) > 0, C(x,y) >0 and (x, y) € R, where R is a rectangular region.
Along the boundary dR of R the boundary condition

a5, 3) 5 ) + B3 3) o 3) = 7(5)

holds, with afx,y), B(x,¥)>0 and a(x,y)+fB(x,y) >0 and where &/on is the
outward derivative perpendicular to dR. The structure of the resulting symmetric M-
matrix 4 of order N is shown in Fig. 1. The elements of the diagonal of 4 are denoted
by a;, those of the first upper diagonal by b, and those of the mth upper diagonal by
¢;, where i is the index of the row of 4 in which the respective elements occur, and m
is the half bandwidth of the matrix. For the derivation of such linear systems see
Ref. [14].

2.1.1. Diagonal scaling. The simplest permissible choice for an incomplete LU-
decomposition K is the diagonal of 4. The resulting conjugate gradient method is the
same as the c.g. method applied on the matrix scaled by its diagonal. This scaling is
in some respects optimal, since it approximately minimises the condition number of
K~'A4 among all diagonal scalings [10]. If 4 has property (4) it is the optimal
diagonal scaling [2,4]. If the equation is scaled in advance, the number of
multiplications is 10N per iteration. If not, this number will be 11 N. The total
amount of storage is seven arrays of length V.

[ TWO DIMENSIONAL}

Fic. 1. Matrix of Section 2.1.
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FiG. 2. Matrices of L] | and D, , {Section 2.1.2).

2.1.2. ICCG(1,1) and SSOR(w =1). Here the matrix K is chosen so that its
decomposition factor L7 has the same sparsity pattern as the upper triangular part of
A. This decomposition has been considered by many authors (3,5, 8, 11, 131

It is convenient to write this decomposition as K, ; =L, D, ,L{,, where LT, is
an upper triangular matrix and D, , a diagonal matrix equal to the inverse of the
main diagonal of L, ;. In common with the elements of 4, those of L, , are denoted

by d;, 5; and &, and those of D, , by d; (see Fig. 2). The following relations are easily

H H
verified:
b?

~
i~13iA1_Ci—mai-—m

b;=b, and ¢ =c;

di:gi_lzai"
for i=1,2,.,N.

In these relations the non-defined elements are zero. Only extra storage for the
clements d; is required. The resulting hybrid conjugate gradient method is called
ICCG(1, 1). The indices are used to indicate that there is one non-zero diagonal next
to the main diagonal and one non-zero diagonal at the outer side of the band. This is

Fic. 3. Matrix K, , (Section 2.1.3).
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ICCG(0) of Ref. [8]. The number of multiplications for this method is 16N
multiplications per iteration, and the memory requirements are 8N words.

The SSOR(w = 1) decomposition arises if all Gaussian elimination corrections are
neglected. Thus SSOR(w = 1) is an example of the extended class of incomplete
decompositions mentioned in Section 1. The number of multiplications remains the
same as for JCCG(1, 1), but one array of storage has been saved. For the use of
SSOR as a preconditioning technique see Ref. [1].

2.1.3. ICCG(1,2). The matrix K, =L, ,D, L{, of the previous section is a
matrix equal to 4, except for two diagonals adjacent to the outermost two diagonals,
as indicated by the dotted lines in Fig. 3. By including non-zero entries on those lines
in L and L7, we expect to improve the approximate decomposition. This approx-
imation will be written as

_ T
K1,2 _Ll,2D1,2L1,27

where D, , is the diagonal matrix equal to the inverse of the main diagonal of L,
The elements of L, are denoted by d;,5;, €, and ¢; and those of D, , by d; (see
Fig. 4). The elements d;, b,, ¢;, d; and é; can be computed recursively from

=& =B & 8y A~ G d
bi=b;=Cimi1 dims1€iomin for i=1,2,.,N.
&=—¢_d;_\b;_, B
=g

l

The non-defined elements are all zero.

Storage is required for three arrays of length N. The number of multiplications
necessary for each iteration step of the resulting hybrid conjugate gradient method
ICCG(1, 2) is equal to 18N, and the memory requirements are 10N words.

In order to save computer storage (one array) the relatively small correction on 5,
can be omitted. Thus &, = b;. This is another example of the extended class of incom-
plete decompositions and will be denoted by ICCG(1%*, 2).

2.1.4. ICCG(1,3). The matrix K, , is equal to A, except for the two dotted
diagonals as indicated in Fig. 5. These non-zero elements can be eliminated by
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™ 4

Fic. 5. Matrix K, , (Section 2.1.4).

introducing an extra diagonal in LT (see Fig. 6). The elements on these diagonals will
be denoted by f;. This incomplete decomposition will be denoted by

— T
K1,3 —L1,3D1,3L1,3-

The elements of D, ; and L] , can be computed from:

~ 2 72 ) )
ai_ai '“ai_bi‘lgi~1_fz>m+267i*m+2_ei—m+1d1’~m+l \

~2
—ci—mgi—m’
bi: bz‘ - i—m+1‘7i‘m+leifm+l - ei—m+25i—m+z/?z:\m+2’
_ i=172,..N
f:—_e‘w 67‘— 5}~17
_CI—IJ 5719
Ei:ci’
The non-defined elements are zero.
N

\\b\“ AN

e ;i

T
L13= D13 =
L Y

Fic. 6. Matrices Lig and D, ; (Section 2.1.4}.
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Fic. 7. Matrix K, ; (Section 2.1.5).

The resulting ICCG(1, 3) process necessitates about 20N multiplications per

iteration and requires
2.1.5. ICCG(2,4).

11 arrays of length N.
Unlike X, | and K, ,, K, , differs from A by four non-zero

diagonals (Fig. 7). To eliminate these, two more non-zero diagonals in L7
necessary. The elements on these diagonals are denoted by %; and g; (Fig. 8). This

incomplete decomposition is written as

— T
K2,4 - L2,4D2,4L2,4

and the elements of Lj , and D, , follow from

dizgi_l:ai_l;?—lgi—l_ﬁ?—zai—z_giz—mugi—mu*fz?—m+z‘7i-m+z
—é;‘z—m+lgi—m+1_5:'z-m‘]i—ma

Ei:bi_ﬁi—1‘7i—1b~i—1— i—m+3‘7i—m+3g~i—m+3‘éi~m+z‘7i~m+zf:‘~m+2
_Ef~m+1Ji—m+1é'i—m+19

ﬁr —€;_ +3J: m+3§i—m+3 Ez m+2‘7:—m+ i—m+2° i=1,2..,N

§i=—¢_,d, ,h;_, f, iy

f odi ks 5’,-_15,-_1
~&_,d:_1b; 4,

5-:0,-,

{

The non-defined elements are zero.
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FI1G. 8. Matrices LZT,4 and D, 4 (Section 2.1.5).

The resulting ICCG(2,4) process necessitates about 24N multiplications per
iteration and requires 13 arrays of length N.

If instead of the two extra diagonals / and g in LT we take only the / diagonal, the
ICCG(3) method of Ref. [1] results. This method is denoted in this report by
ICCG(2,3).

2.1.6. Some other decompositions. Proceeding in this manner we obtain a
sequence of incomplete decompositions K 5, K5 g, K 14, K322, €tC, resulting in an
increasingly rapid convergence. From the indices we see that the number of non-zero
diagonals grows rapidly and thus the amount of work. However, only adding the two
diagonals next to those of the previous decomposition will cover most of the
convergence improvement. In this way, K;,, K, etc., together with the
corresponding ICCG methods ICCG(3,5), ICCG(4,6) ete., are developed.

Up to now we have always added complete diagonals in the decomposition
process. The diagonals, however, contain their non-zero entries only in a blogk
structure (see Fig. 9). In particular, this implies that in our terminology a complete
Choleski factorisation is equivalent to “incomplete decomposition” with 2m — 2.gxtra
“diagonals.”

F16. 9. Structure of Choleski factorisation,
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Fic. 10. Matrix 4 for periodic boundary conditions (Section 2.2).

2.2. Five-Point Discretisation for Problems with Periodic Boundary Conditions

The linear equations in this section arise in the same way as the linear equations in
Section 2.1, except that a periodic boundary condition holds in at least one direction.
In the examples we have restricted ourselves to a periodic boundary condition in the
x-direction. This boundary condition gives rise to additional elements in the matrix 4,
as indicated in Fig. 10. These extra elements are denoted by f,. Since / is the row
index, only £y, 8, (> Bapms - are non-zero. Again A is an M-matrix.

2.2.1. ICCG(1,1). In common with the non-periodic case in 2.1.1 an incomplete
decomposition can be constructed in cases where the upper triangular factor has the
same sparsity structure as the upper triangular part of 4. This decomposition is
written as

— T
Kl,l _LI,IDI,ILI,I'

The elements of L} ; and D, ; can be calculated from

fl

1 o 2 : ~2
‘Z’ _’ai_bi—lgi—l— i—m+ldi—m+l~ci—-mdvi~m’

b,=b, Ci=0¢ys Bizﬁi’

g,
i=1,2,.,N.

1

I

Non-defined elements are zero. Note that the term f7_ ., d;_,.,# 0 only, if i = m,
2m, 3m,... The resulting ICCG(l,1) process again takes approximately 16N
multiplications per iteration, and needs 8N words.
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2.2.2. ICCG(1,2). The matrix K, ; of 2.2.1 has elements as indicated in Fig. 11.
To annihilate these elements in L”, non-zero elements are required in these places.
These elements are denoted as shown in Fig. 12 by d;, b;, &, £, €5 7;» J; and the
elements of D, , by d;. They can be calculated from

\
d=d"'=a,—b_ d \—&_ i di_ i1 — G4,

i—-m“i—-m

~&_d,_(onlyfori=m+1,2m+1,3m+ 1,—-)

- %~m+25i—m+2 ‘B%—m+lai~m+l (only for i = m, 2m —~-), " = 1,23, N,
hi =0, Ci_ps1@i s 161 sy (Only for i # m, 2m —-),
&i=¢;,
&= —C_,d;_\b;_ (only for i [, m+ 1-—-), f
giz“€i~m+23imm+2)7fwm+2~Ei~m+lji—m+lﬁi—m+l’ i=m,2m,—-,
V=P d_\5_,, i=2,m+2,2m 42—,
Ez=ﬁi—5;—1571415iw17 i=lm+1,2m+ 1, ~——.
Note that b,,,5,,,——— and é,,€,,,,—~— are nonexistent. The resulting ICCG

process takes 18N multiplications per iteration and requires roughly three arrays of
length N for the incomplete decomposition,

2.2.3. ICCG(1, 1) periodic. The incomplete decomposition of 2.2.1 does not have
a periodic structure. To obtain a K with a periodic structure we write

K,=(L,+D,")D,(L] +D;").

Fic. 11. Matrix K, , (Section 2.2.2).

581/44/1-10
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F1G. 12. Matrix L], (Section 2.2.2).

The periodic structure of the matrix L, is given in Fig. 13. D, is a diagonal matrix.
The elements of L, and D, have to satisfy:

5i:bi’ CTiZC'i, B;=,Bz fori=1,2,—N, (2231)

a.:J.‘I:a.——

t 14 14

p?.d_ & ,.d_, fori=23,—mm+2,m+3—,
2m, 2m + 2, ~——, N, ©(2.23.2)

d=d'=a,—Fd; —_ndi_, fori=l,m+1,2m+1,—— N—m+ 1.
(2.2.3.3)

The d; cannot be calculated straightforwardly, since in the second formula d,, ,,_, is
present. We can calculate them by substituting (2.2.3.3) into (2.2.3.2) for the next i,
and continuing in this way, we find quadratic equations for the d,,,. For d,,, we
choose the largest root, since this choice results in smaller elements 4, _,d; " é;_, in
the error matrix K, — 4. We now give the derivation for the formula for d,,. The dy,,

T T e—— e G,
dil=w,—v,d, (2.2.3.4)

and (2.2.3.2) as

Ji"l =w;— Uia;'—la i=2,—-m, (2.2.3.5)
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Fic. 13. Matrix L} (Section 2.2.3).

From induction it follows that:

+g.d )
izuij”’— fori=1,2, ——, m.
v+ 8,4,
The coefficients p,, g, and s; satisfy
pi=1 q,=0, ry=Wwy, 8§y =0, Pivy =7y i1 = S
Fig1 = Wi Py — Uiy Dys Sit1 = Wi S — V14

This leads to the quadratic equation in d,, with known coefficients p,,, g,,, 7, -and s,,-
Smgfn + (rm - qm) C’Zm T Pm= 0,
from which the largest root can be calculated.

2.3. Seven-Point Discretisations of Elliptic p.d.e’s in Three Dimensions

The seven-point discretisation for Eq. (2.1.1) in three dimensions leads in a similar
way to a matrix with seven non-zero diagonals. - The structure of this matrix 4 is
shown in Fig. 14. The elements of the upper triangular part of 4 -are denoted by
a;, b;, c; and e;, where i is counted by the row. If n, m, k are the number of gridpoints
in the x,y, z directions, respectively, the order of the matrix and the sizes of the
blocks are nmk, nm and n.

23.1. ICCG(1,1,1). In common with the 2-D case the ICCG(L 1, 1)
factorisation is the one where the upper triangular factor has the same non-zere
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nxmxk

L \ N

F1G. 14. Matrix 4 for three-dimensional problems.

structure as the upper triangular part of 4. Again this decomposition is written as
Kiy,=L; D ,LT, , where L, is an upper triangular matrix and D, ; , a
diagonal matrix equal to the inverse of the main diagonal of L{, . The elements of
LT, | are denoted by d;, b;, ¢; and ¢&; and the elements of D, , , by d;. These elements
are given by the recurrency relations:

~ g1 2 2 7 2
ai“gz‘ _ai_bi—lai—l_ci—ndiwn_ei—mngi—mn .
N . fori=1,2,—— nmk.
b;=2b;, €;=c; and €, =g

i

\

Fig. 15. Matrix K, ; (Section 2.3.1).
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Non—defined elements should be replaced by zeros. It can easily be seen that for
major problems where the diagonals cannot be stored all together in core, the d, can
be calculated by taking successively only parts of the order of n X m into core.

The resulting hybrid conjugate gradient method requires 20N multiplications per
iteration, and 9N words for storage.

£«

2.3.2. Other decompositions for 3-D. The matrix K, , =L, D, L{,,, of
the previous section is a matrix equal to A4, except for six diagonals, as shown in
Fig. 15 as dotted lines. We obtain another decomposition by including non-zero
entries on these lines in L and L”. The elements of L] are denoted by d,, b,, &,, &,, f.
g; and f;, as shown in Fig. 16, and can be calculated from:

\
d=d;' = ;- 5?~1‘Z‘—1 - E-l'z—n+lgi~n+l —~& .4,

i 1

~2 2 ~2
“gi—nm+ngi~nm+n—— ifnm+lgi—nm+1-ei«nmgi—nm’
bi:bz 5 nt1 gt n+1;{i~n+1 _é’i—mn-&—lgi—mwrl/?;fmn#—lv
ﬁl:C -—167:' b -1 i—mn+n67ifmn+ng~iAmn+n’

) i=1,2,——— mnk.

¥

H

€ mn+ngz’-mn+ngi»mn+n’

g j‘i—nJrIJi\nJ«lﬁi—n-H'_é'i—ngi—n(?ifn!
fi=—€_.di_b,_,,
e =e;,

Six arrays of length N are required to store the non-zero diagonals of L7. The
resulting JCCG method requires 26N multiplications per iteration.

7~

Fi1g. 16. Matrix L7 (Section 2.3.2).
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Unfortunately, if we proceed in this manner the number of diagonals in the subse-
quent decompositions will increase rapidly. For instance, the next decomposition has
12 non-zero diagonals in its upper triangular part. The resulting ICCG method takes
36N multiplications per iteration.

2.4. M-Matrices Arising from Five-Point Discretisations on Irregular Regions

So far we have only considered discretisations on square regions. We are now
going to comment on regions with internal boundaries (no-flow boundaries) or
differently shaped regions. For convenience it will be assumed that the region consists
of small squares.

An internal boundary is reflected by some extra zeros in the matrix, but the matrix
remains a symmetric M-matrix, thus incomplete decompositions can be constructed
as before. An internal boundary implies that there is no direct connection (no flow)
between points on different sides of the boundary. This property is preserved in each
of the above-mentioned decompositions. This in contrast with Stone’s SIP method
[11], where the use of the iteration parameter may cause a connection through a no-
flow boundary.

Irregularly shaped regions can be extended in an obvious way to square regions
with an internal boundary at the point of the original real boundary. The linear
system arising from this extended region can be treated as before, bearing in mind
that the extended parts do not require computational work. If the true boundary does
not coincide with meshpoints, the discretisation may lead to an irregular non-zero
structure. This will be considered in the following section.

2.5. M-Matrices with an Irregular Non-zero Structure

M-matrices with an irregular non-zero structure arise, for instance, from some
finite-element methods on irregular meshes [12] and pipeline networks [9].

We write the matrix 4 as 4 =L + D + U, where L, U are strictly lower and upper
triangular, respectively, and D the diagonal of 4. If we omit all Gaussian elimination
corrections on off-diagonal elements (see Section 1), then the 1ncomplete decom-
posmon is given by Ko = (L + D) Dy ' (D, + U).

D, is determined by the relation that the diagonal of K, — A, which is equal to the
diagonal of D, + diag(I.D, ' U) — D, is zero.

If the matrix is symmetric, this decomposition can be combined with the conjugate
gradient method. For non-symmetric matrices see Section 4.

3. ALGORITHMS FOR SYMMETRIC PoOSITIVE DEFINITE MATRICES

If the matrix is not an M-matrix, the construction of an incomplete decomposition
may fail because of the occurrence of non-positive diagonal elements [6]. Small
positive diagonal elements are also undesirable because of stability problems.
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Three different strategies which seem to overcome this problem have currently been
proposed:

(i) If a diagonal element of less than a prescribed positive value is encountered
during the construction of the incomplete LL" decomposition then some already
computed off-diagonal elements in the corresponding column of L” are set to zero.

(ii) The diagonal element is enlarged if necessary [6], e.g., by neglecting some
of the Gaussian elimination corrections (see Section 1).

(ili) We can also add af to the matrix [7]. If o is large enough, the problems
signalled will not occur.

Strategy (ii) has the advantage over (i) that the Gaussian elimination process is cut
short 1 step later. Further if, e.g., K, as defined in Section 2.5 is applied strategy (i)
needs extra memory to denote which elements have been set to zero.

Strategy. (iii) has the disadvantage that the whole diagonal is affected whereas often
only local corrections are required. We prefer strategy (ii) to the others.

If the matrix is non-symmetric, then an incomplete LU decomposition K can be
constructed in a similar way as described previously for the symmetric matrices.
Since symmetry and positive-definiteness are both required for the conjugate gradient
algorithm, the CG algorithm can be applied to:

ATK" UK Ax = A"KT 'K D,

This algorithm requires twice as much work per iteration as the corresponding
symmetric case and the upper bound for the number of iterations increases. It has
been considered in more detail by Kershaw [6].

5. NUMERICAL EXPERIMENTS

To obtain an impression of the convergence behaviour of different incomplete
decompositions, we have, for the JCCG methods introduced in Section 2.1,
(i) compared the convergence results,
(ii) calculated the eigenvalue distribution of the preconditioned matrices K~ '4.
The two test problems were:
(i) Problem 1. The five-point discretisation of the Poisson equation Au =0
over 0K x < 1, 0y 1 with boundary ‘conditions du/8x =0 for x =0 and x = 1,

oufoy =0 for p=1 and u=1 for y=0. A uniform rectangular mesh was chosen,
with dx = 1/31 and 4y = 1/31, which resulted in a linear system of 992 equations.
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The solution of this equation is known to be u(x,y)=1 and as initial starting vector
for the iterative schemes a vector was chosen with all entries random between 0 and
1. This was done to prevent coincidental fast convergence.

(i) Problem 2. This problem has been taken from Varga [14]. Equation
(2.1.1) holds for R, where R is the square region 0 < x,y < 2.1 as shown below:

2.4
20

1.0

y —»

On the boundary of R, the boundary conditions are du/én = 0. Further, D(x,y)=0
over R and the functions 4, B and C are given by

Region A(x,») B(x,y) Clx, y)
1 1.0 1.0 0.02
2.0 2.0 ©0.03
3 3.0 3.0 0.05

A uniform rectangular mesh was chosen with 0.05 mesh spacing, so that a system of
1849 linear equations resulted. The solution of the system is known to be u=0. A
vector similar to the one in problem 1 was chosen as starting vector.

In Tables I and II the convergence results are listed. In both tables we see that in
general the amount of work decreases when extra diagonals are included according to
the patterns described in Section 2. Including other diagonals does not lead to further
improvements, e.g., ICCG(1,4), ICCG(2, 5) and ICCG(3, 4). Taking into account the
amount of storage required and the complexity of programming we conclude that
ICCG(1,3) is a good choice. ‘

Since the convergence behaviour depends on the eigenvalue distribution of the
preconditioned matrix, where the condition number and clustering play an important
role, a number of the largest and smallest eigenvalues have been calculated for the
matrix of problem 1 preconditioned with several incomplete decompositions. The
cigenvalues are all divided by the smallest eigenvalue A,,;,, because an upper bound
for the convergence factor of the conjugate gradient method is given by
c—1)/ (\/ ¢+ 1), where the condition number ¢ =21,,,,/A;n. The distribution of
these scaled eigenvalues has been plotted in Figs. 17-21.
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Fic. 17. Distribution of scaled eigenvalues of 4.
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Fic. 18. Distribution of scaled eigenvalues of K} { 4.

From these figures we see that the condition ¢ of the preconditioned matrix
decreases rapidly with an increasing number of diagonals. Also, the majority -of
eigenvalues are concentrated in intervals which become smaller and smaller in
relationship to ¢. Comparisons with other methods for both these examples have been
described in Ref. [8].
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